SECTION - E

- 9. Briefly answer all the following questions:
 - (a) What are the possible sources of error in the numerical solution of PDEs?
 - (b) What is the advantage of banded storage mode in Gauss elimination method?
 - (c) What is the condition for the convergence of Gauss -Seidal method?
 - (d) Find the next iterative value of the root of $x^2 4 = 0$ using the Newton-Raphson method, if the initial guess is 3.0. How round off errors are caused?
 - (e) Explain what is truncation error?
 - (f) What is the relationship between relaxation methods and Gauss Seidel method?
 - (g) What is the difference between elliptic and parabolic partial differential equations?
 - (h) Classify the partial differential equation:

(i)
$$5 \frac{\partial^2 u}{\partial x^2} + 6 \frac{\partial^2 u}{\partial y^2} = xy$$

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} - 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = Sin \left(\frac{\partial u}{\partial x} \right)$$

- (i) Define predictor-corrector method.
- (j) Define artificial neural networks. (10×2=20)

[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2124)

1636

M. Tech 1st Semester Examination

Computational Methods in Water Resources Engineering WRE-103

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Candidates are required to attempt five questions in all selecting one question from sections A, B, C, D and all the subparts of question in section E.

SECTION - A

- (a) What is the condition for the convergence of Gauss -Seidal method? (8)
 - (b) Solve the following system of equations using Gaussian elimination:

$$2x + y + 3z = 1$$

 $2x + 6y + 8z = 3$
 $6x + 8y + 18z = 5$ (12)

- (a) If f(x) = 0 has root between x = a and x = b, then write the first approximate root by the method of false position.
 (10)
 - (b) Find the real root of the equation

$$x \log_{10} x - 1.2 = 0$$

correct to decimal places by the method of False Positions. (10)

[P.T.O.]

SECTION - B

- 3. (a) What a differential equation and how are these classified? (3+3=6)
 - (b) Give the recursive algorithm to obtain numerical solution of ordinary differential equation by Euler's method. (14)
- (a) Using modified Euler's method, compute y(0.1) with h=0 from

$$\frac{dy}{dx} = y - \frac{2x}{y}, \ y(0) = 1$$
 (10)

(b) Given $\frac{dy}{dx} = x^3 + y$, y(0) = 2, Compute y(0.2), y(0.4) and y(0.6) by Runge-Kutta method of fourth order. (10)

SECTION - C

 (a) Explain the general procedure of approximating the derivatives in a PDE at discrete points and then use the table

	X	0.5	0.6	0.7
Ī	Sin(x)	0.47943	0.56464	0.64420

to estimate the first derivative of sin(x) at each mesh point. Compare your estimates with the exact answer. Estimate the 2nd derivative of sin(x) at x = 0.6. Take h = 0.1. (6+6=12)

- (b) Given the value of function f at the points (x-h), $(x+\theta h)$ where $(0 < \theta < 1)$, find the first order formula for the derivative of function f at x. (8)
- (a) How the partial differential equations are classified? Give two examples of linear homogeneous partial differential equations.

 $c \frac{du}{dx} + \frac{du}{dt} = 0$, subject to initial conditions:

Consider the homogeneous linear PDE

$$x(s=0)=x_0$$
; $t(s=0)=0$ and

$$u(x,0) = f(x)$$
; $u(s=0) = f(x_0)$

Show that the characteristics curves arc lines given by $t=\frac{1}{c}\;(x-x_0).$ Sketch the characteristics in (x, t) space. (12)

SECTION - D

- 7. (a) Explain the difference between explicit and implicit finite difference schemes. (8)
 - (b) Considering the initial boundary value problem:

$$u_{xx} = \frac{1}{c}u_t \ u = u(x,t): 0 < x < 1; t > 0$$

$$u(0,t) = u(1, t) = 0; u(x,0) = f(x)$$

where c is a constant. Using explicit finite difference scheme, obtain recursive relationship giving u in a given row (time) in terms of three consecutive values of u in the row below (one time step earlier). (12)

- 8. (a) What is the basic processing unit in artificial neural network? Discuss its properties. (10)
 - (b) With the help of a diagram explain the architecture of a simple neuron network. (10)

[P.T.O.]